ADVANCED GCE

MATHEMATICS
Probability \& Statistics 3

Candidates answer on the Answer Booklet
OCR Supplied Materials:

- 8 page Answer Booklet
- List of Formulae (MF1)

Other Materials Required:
None

Wednesday 20 January 2010
Afternoon
Duration: 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name clearly in capital letters, your Centre Number and Candidate Number in the spaces provided on the Answer Booklet.
- Use black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure that you know what you have to do before starting your answer.
- Answer all the questions.
- Do not write in the bar codes.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You are reminded of the need for clear presentation in your answers.
- The total number of marks for this paper is 72.
- This document consists of 4 pages. Any blank pages are indicated.

1 The continuous random variable X has probability density function given by

$$
\mathrm{f}(x)= \begin{cases}\frac{2}{5} & -a \leqslant x<0, \\ \frac{\mathrm{e}}{5} \mathrm{e}^{-2 x} & x \geqslant 0 .\end{cases}
$$

Find
(i) the value of the constant a,
(ii) $\mathrm{E}(X)$.

2 The amount of tomato juice, $X \mathrm{ml}$, dispensed into cartons of a particular brand has a normal distribution with mean 504 and standard deviation 3 . The juice is sold in packs of 4 cartons, filled independently. The total amount of juice in one pack is $Y \mathrm{ml}$.
(i) Find $\mathrm{P}(Y<2000)$.

The random variable V is defined as $Y-4 X$.
(ii) Find $\mathrm{E}(V)$ and $\operatorname{Var}(V)$.
(iii) What is the probability that the amount of juice in a randomly chosen pack is more than 4 times the amount of juice in a randomly chosen carton?

3 It is given that X_{1} and X_{2} are independent random variables with $X_{1} \sim \mathrm{~N}\left(\mu_{1}, 2.47\right)$ and $X_{2} \sim \mathrm{~N}\left(\mu_{2}, 4.23\right)$. Random samples of n_{1} observations of X_{1} and n_{2} observations of X_{2} are taken. The sample means are denoted by \bar{X}_{1} and \bar{X}_{2}.
(i) State the distribution of $\bar{X}_{1}-\bar{X}_{2}$, giving its parameters.

For two particular samples, $n_{1}=5, \Sigma x_{1}=48.25, n_{2}=10$ and $\Sigma x_{2}=72.30$.
(ii) Test at the 2% significance level whether μ_{1} differs from μ_{2}.

A student stated that because of the Central Limit Theorem the sample means will have normal distributions so it is unnecessary for X_{1} and X_{2} to have normal distributions.
(iii) Comment on the student's statement.

4 The continuous random variable V has (cumulative) distribution function given by

$$
\mathrm{F}(v)= \begin{cases}0 & v<1 \\ 1-\frac{8}{(1+v)^{3}} & v \geqslant 1 .\end{cases}
$$

The random variable Y is given by $Y=\frac{1}{1+V}$.
(i) Show that the (cumulative) distribution function of Y is $8 y^{3}$, over an interval to be stated, and find the probability density function of Y.
(ii) Find $\mathrm{E}\left(\frac{1}{Y^{2}}\right)$.

physicsandmathstutor.com

5 Each of a random sample of 200 steel bars taken from a production line was examined and 27 were found to be faulty.
(i) Find an approximate 90% confidence interval for the proportion of faulty bars produced.

A change in the production method was introduced which, it was claimed, would reduce the proportion of faulty bars. After the change, each of a further random sample of 100 bars was examined and 8 were found to be faulty.
(ii) Test the claim, at the 10% significance level.

6 The deterioration of a certain drug over time was investigated as follows. The drug strength was measured in each of a random sample of 8 bottles containing the drug. These were stored for two years and the strengths were then re-measured. The original and final strengths, in suitable units, are shown in the following table.

Bottle	1	2	3	4	5	6	7	8
Original strength	8.7	9.4	9.2	8.9	9.6	8.2	9.9	8.8
Final strength	8.1	9.0	9.0	8.8	9.3	8.0	9.5	8.5

(i) Stating any required assumption, test at the 5% significance level whether the mean strength has decreased by more than 0.2 over the two years.
(ii) Calculate a 95% confidence interval for the mean reduction in strength over the two years.

7 A chef wished to ascertain her customers' preference for certain vegetables. She asked a random sample of 120 customers for their preferred vegetable from asparagus, broad beans and cauliflower. The responses, classified according to the gender of the customer, are shown in the table.

	Asparagus	Broad beans	Cauliflower
Female preference	31	9	25
Male preference	17	21	17

(i) Test, at the 5% significance level, whether vegetable preference and gender are independent.
(ii) Determine whether, at the 10% significance level, the vegetables are equally preferred.

RECOGNISING ACHIEVEMENT

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations, is given to all schools that receive assessment material and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.
If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity. For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1GE.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

